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Abstract

It has been established that under certain conditions microscopic dielec-

tric objects can be trapped by a tightly focused laser beam. This phenomena

is commonly referred to as an optical gradient trap. The recently developed

vector �nite element method is used to visualize the interaction of the laser

beam with the dielectric object and to quantitatively predict the optical trap-

ping eÆciency. The vector �nite element method is an accurate and eÆcient

approach when the incident beam wavelength is comparable to the object

size, and it has the advantage that it can be used to model the trapping of

arbitrarily shaped 3D objects.

1 Introduction

It is well known that light waves have momentum and that this momentum can

be transfered to a solid object. This is often referred to as radiation pressure.

It was �rst demonstrated in 1970 that the force of radiation pressure could

accelerate a micrometer-sized polystyrene sphere [1]. Later it was demon-

strated that the sphere could be levitated by balancing the force of radiation

pressure against the force of gravity [2]. In these experiments it was observed

that the force was predominately in the direction of power ow, with a slight

transverse force towards the center of the beam. In 1986 it was shown exper-

imentally that a microscopic dielectric object could be trapped by a tightly

focused laser beam [3]. This is referred to as a single-beam optical gradient

trap, or \optical tweezers". The optical trapping force has been measured for

dielectric spheres under a variety of conditions [4, 5, 6]. The trapping force
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depends upon many factors including the size and dielectric constant of the

object, the wavelength and polarization of the laser beam, and the position of

the object with respect to the beam focus spot. The predominate application

of optical traps is microbiology, where optical traps have been used for the

manipulation of cells [7, 8, 9] and the manipulation of viruses and bacteria

[10, 11]. As another biological application, a properly calibrated optical trap

can be used to measure minute biological forces [12, 13, 14] within living cells.

Several di�erent approaches for the theoretical modeling of optical gradi-

ent traps have been investigated. In the geometrical optics (GO), approach

the incident laser beam is modeled by a collection of independent light rays

[15, 16, 17]. These rays intersect the surface of the dielectric object and are

refracted/reected according to the classic Fresnel formula. In practice each

ray is traced for only a few reections. Each ray carries momentum, and this

momentum changes direction as the ray is refracted and reected. The net

force on the dielectric object is then computed by summing the contribution of

momentum transfer from each individual ray. Since the force is proportional

to the incident power it is common to introduce the optical trapping eÆciency

Q =
cF

nP
; (1)

where F is a component of the force, P is the power, c is the speed of light, and

n is the index of refraction. By convention the object is trapped if Q > 0. GO

modeling predicts that dielectric objects will be trapped only for particular

values of n. For example, GO modeling predicts that reecting spheres and

dielectric spheres with n < 1 will be pushed away from the beam focus spot,

rather than being trapped, which is in agreement with experimental data. In

addition GO modeling predicts that extreme beam cone angles are required for

trapping to occur, which is also in agreement with experiment. However the

GO model is an asymptotic approximation and hence the predicted Q agrees

with measured values only for large spheres. This is signi�cant disadvantage

of the GO model, since for most applications the object size is comparable to

the incident beam wavelength.

Several researchers have proposed modeling optical gradient traps using

a �nite series approximate solution of Maxwell's equations [4, 18, 19]. This

approach yields accurate full-wave electromagnetic �elds within, and on the

surface of, the dielectric sphere. The primary diÆculty with this approach

is modeling the incident laser beam, however fairly accurate approximations

of Gaussian beams have been developed [20]. Given the approximate elec-

tromagnetic �eld on the surface of the sphere, the optical trapping force can

be computed by integrating the dot product of the surface outward normal

with the Maxwell stress tensor over the surface of the sphere. Optical trap-

ping eÆciencies computed in this manner correlate well with measured values.

The disadvantage of this approach is that it is only valid for spheres or other

simple shapes that admit to a series solution of Maxwell's equations.

In this paper, a vector �nite element method is used to model an optical

gradient trap. The method solves Maxwell's equations on an unstructured

three-dimensional grid using edge vector �nite elements as a basis for the

electric �eld and face vector �nite elements for the magnetic ux density. The

method described in this paper is a generalization of that originally proposed

in [21]. The convergence of the method has been theoretically analyzed by
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several researchers [22, 23, 24, 25], and computational eÆciency of the method

has been investigated [26]. There are several advantages of the vector �nite

element compared to other grid-based methods such as nodal �nite element,

�nite volume, and �nite di�erence methods. First, the method accurately

models the discontinuity of the electric �eld across material interfaces, which

is particularly important for modeling optical gradient traps. Second, the

method is provably stable and energy conserving even for highly distorted

grids. Third, the method accurately models the divergence (or lack thereof)

of �elds and uxes. The accurate modeling of the divergence is related to the

problem of spurious modes [27, 28], which often plague traditional nodal �nite

element methods. Since there are several di�erent variants of the vector �nite

element method, the method used in this study will be derived below. The

procedure for modeling an optical gradient trap is described in detail, and pre-

dicted trapping eÆciencies for microspheres are compared to measured values.

The computed trapping eÆciencies compare well (withing the measured error

bounds) con�rming the utility of the vector �nite element method for optical

force calculations.
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2 Vector Finite Element Method

There are a variety of ways of expressing Maxwell's equations, in this paper

the electric �eld ~E and the magnetic ux density ~B are used as the principle

variables. Maxwell's equations for the electromagnetic �elds in an inhomoge-

neous volume 
 are

�
�1 @

@t
~B = ��

�1
r� ~E � �

�1
�M�

�1 ~B (2)

�
@

@t
~E = r� �

�1 ~B � �E ~E (3)

r � � ~E = 0 (4)

r � ~B = 0 (5)

Note that we have assumed zero charge density. The dielectric permittivity �,

the magnetic permeability �, and the conductivities �E and �M are assumed

to be symmetric positive-de�nite tensors, which are functions of position only.

The initial conditions and boundary conditions are given by

~E (t = 0) = ~Eic; ~B (t = 0) = ~Bic in 
 (6)

n̂� ~E = ~EBC on �: (7)

In addition, for the problem to be well-posed we require that the independent

magnetic and electric current sources satisfy

r � ~M = 0;r � ~J = 0: (8)

The variational form of the above PDE is: �nd ~E 2 H (curl; t) and ~B 2

H (div; t) such that

@

@t

�
� ~E; ~E

�

�
=
�
�
�1
r� ~E

�

; ~B
�
�

�
�E ~E; ~E

�

�
�

�
~J; ~E

�

�
; (9)

@

@t

�
�
�1 ~B; ~B

�

�
= �

�
�
�1
r� ~E; ~B

�

�
�

�
�
�1
�M�

�1 ~B; ~B
�

�
�

�
�
�1 ~M; ~B

�

�
;

(10)

for all ~E�

2 H0 (curl; t) and ~B�

2 H0 (div; t). The solution spaces are de�ned

by

H (curl; t) =
n

~u(t) : ~u(t) 2 (L (
))3 ;r�
~u(t) 2 (L (
))3

o
; (11)

 ~u(t)


H(curl)

=

� ~u(t)

2 +
r�

~u(t)

2
�1=2

: (12)

and

H (div; t) =
n

~u(t) : ~u; t 2 (L (
))3 ;r �
~u(t) 2 (L (
))3

o
; (13)

 ~u(t)


H(div;t)

=

� ~u; t
2 + r �

~u(t)

2
�1=2

: (14)

The test spaces are de�ned by

H0 (curl; t) =
n

~u(t) : ~u(t) 2 H (curl) ; n̂� ~u(t) = 0 on �
o
; (15)
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H0 (div; t) =

n
~u(t) : ~u(t) 2 H (div) ; n̂ � ~u(t) = 0 on �

o
: (16)

This variational form of Maxwell's equations is a generalization of that pro-

posed in [21] to include conductivities. Equation 10 can be derived by multi-

plying (2) by the test function ~B� and integrating over 
. Likewise (9) can

be derived by multiplying (3) by the test function ~E�, integrating over 
, and

employing the identity r� (a� b) = b � (r� a)�a � (r� b) and the divergence

theorem. One interpretation of the above variational form is that the solution

must satisfy Poynting's theorem of energy conservation for every test function
~E� and ~B�.

The variational form (9)-(10) is discretized using the hexahedral vector

�nite elements de�ned in [21]. The electric �eld is approximated as a linear

combination of edge elements,

~E =

NeX
i=1

�i(t) ~Wi; (17)

where Ne is the number of edges in the mesh. The electric �eld given by (17)

is a �rst order approximation to the true �eld when using the norm (12). The

basis functions ~W are conforming with the space H (curl). These functions

are called edge functions because they have the propertyZ
~Wi � t̂j = Æij ; (18)

where t̂j is the unit tangent along edge j. Hence the degrees-of-freedom �i
are given by

�i =

Z
~E � t̂i (19)

and can be interpreted as the voltage along edge i of the mesh. The magnetic

ux density is approximated as a linear combination of face elements,

~B =

NfX
i=1

�i(t)~Fi; (20)

where Nf is the number of faces in the mesh. The magnetic ux density given

by (20) is a �rst order approximation to the true ux density when using the

norm (14). The basis functions ~B are conforming with the space H (div).

These functions are called face functions because they have the propertyZ
~Bi � n̂j = Æij ; (21)

where n̂j is the unit normal to face j. Hence the degrees-of-freedom �i are

given by

�i =

Z
~B � n̂ida (22)

and can be interpreted as the magnetic ux through face i of the mesh.

The edge and face �nite elements satisfy the same inclusion relations as

their associated Hilbert spaces. Let V denote the space of linear nodal el-

ements, W denote the space of linear edge elements, F the space of linear
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face elements, and S the space of piecewise-constant scalar functions. These

spaces satisfy

If � 2 V then r� 2 W; (23)

If ~E 2W then r� ~E 2 F; (24)

If ~B 2 F then r � ~B 2 S: (25)

These inclusion relations are used in section 3 below to prove some important

properties of the vector �nite element method.

Using the approximations (17) and (20) in the variational form of Maxwell's

equations yields a coupled system of ordinary di�erential equations

C
@

@t
�(t) = K

T
�(t)�G�(t)�Rj(t); (26)

D
@

@t
�(t) = �K�(t)�P�(t)�Dm(t); (27)

where the matrices are given by

Cij =
�
� ~Wi; ~Wj

�
; (28)

Kij =
�
�
�1
r� ~Wi; ~Fj

�
; (29)

Gij =
�
�E ~Wi; ~Wj

�
; (30)

Rij =
�
~Wi; ~Fj

�
; (31)

Dij =
�
�
�1 ~Fi; ~Fj

�
; (32)

Pij =

�
�M

�2
~Fi; ~Fj

�
: (33)

The above system of ODE's is integrated in time using the second-order central

di�erence \leapfrog" method. In this method the electric degrees-of-freedom

are known at whole time steps, the magnetic degrees-of-freedom are known at

the half time steps. Using superscript n to denote the time level, the ODE is

integrated according to

�
C+

�t

2
G

�
�
n+1

= �tK
T
�
n+ 1

2 +
�
C�

�t

2
G

�
�
n
�Rj

n+ 1

2 ; (34)

�
D+

�t

2
P

�
�
n+ 1

2 = ��tK�
n +

�
D�

�t

2
P

�
�
n� 1

2 ��tDmn+ 1

2 : (35)

This integration requires the solution of large, sparse, linear systems at ev-

ery time step. In this study Incomplete Cholesky preconditioned Conjugate

Gradient (ICCG) is used; the performance of this method for these particular

linear systems is documented elsewhere [26],[29].
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3 Analysis

3.1 Stability and Conservation of Energy

Numerical stability is always an issue when solving PDE's on unstructured

grids. Several proposed �nite di�erence and �nite volume methods have been

shown to be unconditionally unstable for distorted hexahedral grids. In this

section we show, using matrix stability analysis, that the vector �nite element

method described above is conditionally stable.

Consider a closed, source-free region with the boundary condition n̂� ~E = 0

on the boundary. There is some initial electromagnetic �eld distribution and

these �elds are updated in time according to (34) and (35). For simplicity

assume lossless media. The simpli�ed update equations become

C�
n+1 = �tKT

�
n+ 1

2 +C�n; (36)

D�n+
1

2 = ��tK�n +D�n�
1

2 : (37)

The matricesC andD are symmetric positive de�nite and hence have Cholesky

decompositions C = ~CT ~C and D = ~DT ~D, respectively. We de�ne new de-

grees of freedom

~� = ~C� (38)

~� = ~D�: (39)

The leapfrog update can now be expressed in ampli�cation matrix form as�
~�n+1

~�n+
1

2

�
=

� �
I ��t2QQT

�
�tQ

��tQT I

��
~�n

~�n�
1

2

�
; (40)

where the matrix Q is given by

Q = ~C
�T
K

T ~D
�1
: (41)

It can be shown [26] that that the stability condition is

�t �
2p

max (�)
; (42)

where � is the set of eigenvalues of the eigenproblem

QQ
T
z = �z: (43)

When (42) is satis�ed all the eigenvalues of the ampli�cation matrix are unity.

In general this is not suÆcient to prove stability but in this case there exists a

complete set of linearly independent eigenvectors and the method is nuetrally

stable. The denominator
p
max (�) has units of frequency and can be inter-

preted as the highest frequency than can be supported by the grid, and the

stability condition is simply that the electromagnetic �elds must be sampled

at (or above) the Nyquist rate.

It is straightforward to relate the above stability analysis to conservation

of energy. The integral form of Poynting's theorem isI
�

�
�1 ~E � ~B � n̂d� +

Z



�
�1 ~B � ~Md
 +

Z



~E � ~Jd
+

Z



�M

�
~B � ~Bd
+

Z



�E ~E � ~Ed
 +

Z



�1

�
~B �

@

@t
~Bd
+

Z



� ~E �
@

@t
~Ed
 = 0: (44)
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The �rst term can be expanded asI
�

�
�1 ~E � ~B � n̂d� =

Z



�
�1 ~B � r � ~Ed
�

Z



�
�1 ~E � r � ~Bd
: (45)

Now using the degrees-of-freedom � and � and the matrices de�ned in (28)-

(33), the discretized version of Poynting's theorem is

�
T
K�� �

T
KT � + �

T
Dm+ �

T
Rj + �

T
P� + �

T
G�+

�
T
D

@

@t
� + �

T
C

@

@t
� = 0: (46)

The combined �rst two terms represent the net power ow into the domain.

The terms �TDm and �TRj represent the power put into the domain by the

independent magnetic and electric current sources, respectively. The terms

�TP� and �TG� represent the power dissipated due to the magnetic and

electric conductivities, respectively, The last two terms �TD @
@t
� and �TC @

@t
�

represent the time rate of change of stored magnetic and electric energy. For

the simpli�ed situation of no net power ow into the domain, no independent

current sources in the domain, and no lossy media in the domain, the time

rate of change of the combined magnetic and electric energy must be zero.

For any stable time step �t we have

�
~�n+1

�T
~�n+1 +

�
~�n+

1

2

�T
~�n+

1

2 = (~�n)
T
~�n +

�
~�n�

1

2

�T
~�n+

1

2 (47)

which is equivalent to

�
�
n+1

�T
C�

n+1+
�
�
n+ 1

2

�T
D�

n+ 1

2 = (�n)
T
C�

n+
�
�
n� 1

2

�T
D�

n� 1

2 (48)

and the electromagnetic energy is indeed constant. This is important for

electromagnetic problems that require long time integration intervals.

3.2 Conservation of magnetic charge

If the initial magnetic ux density is divergence-free (zero magnetic charge

density everywhere) and the numerical method conserves magnetic charge,

than the ux density will remain divergence-free for all time. Magnetic charge

will be conserved if

r �
@

@t
~B = 0: (49)

everywhere, or alternatively I
�

@

@t
~B � n̂ d� = 0; (50)

where the integral is over any particular hexahedral volume in the grid. In

terms of the degrees-of-freedom this can be expressed as

6X
i=1

@

@t
�i = 0; (51)
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since the degrees-of-freedom �i are precisely the net magnetic ux through

face i. These degrees-of-freedom are computed via the magnetic �eld ODE

(27).

De�ne the subspace

F0 = f~u 2 F ; r � ~u = 0g : (52)

An important property of the vector �nite element spaces W and F is that

the operator r� is surjective from W to F0 [21], the curl of every function in

W can be written as a linear combination of functions in F0. Therefore for

any electric �eld, the magnetic ux density computed via (27) satis�es (51)

exactly. This is analogous to charge conservation with �nite volume methods

that place the electric �eld on mesh edges and the magnetic �eld on mesh

faces [30, 31].

3.3 Conservation of electric charge

The electric �eld is approximated as a linear combination of edge elements.

Since these elements do not have normal continuity across cell faces, the elec-

tric �eld is not divergence free in the traditional sense. Rather the electric

�eld is divergence free only in the variational sense. The variational form of

(4) is Z



�
�
r � � ~E

�
d
 = �

Z



� ~E � r� d
 +

I
�

�� ~E � n̂ d� = 0; (53)

where � is a continuous piecewise linear function. Since the �eld is not re-

quired to be divergence free on the boundary � we can choose � = 0 on � and

the last term in (53) is zero. Since it can be assumed that the initial electric

�eld satis�es (53), the requirement for electric charge conservation is

�
@

@t
� ~E;r�

�
= 0; (54)

for all � 2 H(grad).

De�ne the subspace

W0 = f~v 2W ; r� ~v = 0g : (55)

An important property of the vector �nite element spaces W and V is that

the operator r is surjective from V to W0, the gradient of every function in

V can be written as a linear combination of functions in W0. Let ! be the

vector of degrees of freedom of some vector function 
 2 W0. The null space

of the matrix K in (27) is W0, i.e. K! = 0 for all 
 2 W0. The discrete

version of (54) is then

!
T
C

@

@t
�(t) = 0 (56)

for all 
 2 W0. That the above equation is satis�ed can be seen by taking

the dot product of an arbitrary ! with the electric �eld ODE (26) (assuming

zero conductivity and no current source) which yields

!
T
C
@

@t
�(t) = !

T
K

T
�(t) = �(t)TK! = 0 (57)
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for all 
 2W0. Therefore a variational form of charge conservation is satis�ed

for all time. This is true independent of any distortions in the mesh, which is

an important property of the vector �nite element method.
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4 Modeling the optical gradient trap

A three-dimensional hexahedral grid is used to model the dielectric object

and the surrounding medium. The grid is in the shape of a large sphere, with

the dielectric object near the center of the sphere. An example grid is shown

in Figure 1. The initial electromagnetic �elds in the computational domain

are zero. A time varying source is used to launch the laser beam into the

computational domain. This source is designed such that the laser beam comes

to a focus at the center of the grid. The frequency of the laser and the beam

cone angle are user-speci�ed parameters. Since the computational domain

is �nite, the cross section of the incicdent beam is also �nite. Rather than

abrubtly truncating a Gaussian or polynomial pro�le, which would introduce

arti�cial high-frequency components, the beam is modeled with a smooth cos2

cross section. The time dependence of the source is given by

E (t) =

�
1� exp

�
�

t

2�

�2�
sin (!t) : (58)

The parameter � determines the rise time of the beam, typically � is chosen

to be four periods. The simulation is typically run for twelve periods at a

sampling rate of 50 samples per period. This is enough time for the simulation

to reach steady state.

The computational grid is terminated with a Maxwellian absorber in order

to simulate an in�nite medium [32, 33]. In this paper a Maxwellian absorber is

de�ned as several layers of arti�cial anisotropic media, with the conductivity

of the layers graded in such a way as to reduce reections from the boundary.

This can be interpreted as an impedance matching device. In a Maxwellian

absorber the electric conductivity �E and the magnetic conductivity �M are

equal. In this paper a uniaxial tensor conductivity is employed with the optical

axis normal to the boundary of the computational grid. The conductivity in

along the optical axis is zero, the conductivity normal to this axis is given in

Table 4. The permittivity and permeability are that of free space. The choice

of a spherical outer boundary simpli�es the implementation of the Maxwellian

absorber and results in excellent absorbtion of the nearly spherical scattered

�elds. Note that a spherical outer boundary is not required, and that the

method used here does not require an orthogonal or structrured grid.

The Maxwellian absorber used in this paper is quite di�erent than the per-

fectly matched layer (PML) schemes used in the FDTD community. Although

these PML schemes also use multiple layers with varying conductivity, they

result in a modifed split-�eld PDE which has been shown to be weakly un-

stable. Some frequency domain PML schemes use active media in an attempt

to achieve perfect absorbtion, but these schemes also result in instabilities

when applied to temporal electromagnetics. The Maxwellian absorber used

here does not modify the variational form of Maxwell's equations, nor does it

employ active media in an attempt to achieve perfect matching. When used

in a semi-implicit leapfrog update as in (34) and (35) the use of a Maxwellian

absorber is a simple and stable approach for reducing the scattering from the

truncation of the computational grid. The time dependent source used to

launch the wave into the domain is applied to the grid surface seperating the

absorber from the interior of the domain, this is the outer surface shown in

Figure 1.
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Figure 1: Sample hexahedral grid of a dielectric sphere embedded in a spherical

volume

Table 1: Conductivity values for Maxwellian absorber

layer 1 2 3 4 5 6

� 1.25 5.0 11.25 20.0 31.25 45.0
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Given the electromagnetic �elds in the vicinity of the dielectric object the

net force on the object is calculated using the Maxwell stress tensor. The

Maxwell stress tensor �T is given by

�T =
1

2

�
~D � ~E + ~B � ~H

�
�I �

�
~D ~E + ~B ~H

�
; (59)

where �I is the identity tensor. The net force on the dielectric object is then

~F =

I
�

�T � n̂d�; (60)

where � is the surface surrounding the object and n̂ is the unit surface nor-

mal. The integral is computed using a two-dimensional trapezoidal rule. The

Maxwell stress tensor is not continuous across the dielectric discontinuity, in

the evaluation of (60) the �elds are evaluated on the vaccuum side of the

interface. The basis for this approach is that it gives the correct answer for

the extreme case of scattering by a perfect conductor, which would have zero

�elds on the inside surface.

In order for there to be a signi�cant net force, there must be a signi�cant

gradient in the electromagnetic �eld, hence the terminology optical gradi-

ent trap. In electrostatics it is known that a dielectric body will tend to

move toward regions of increasing electric �eld, since this reduces the total

electrostatic energy of the system. The electrostatic force is proportional to

r

�
~E � ~E

�
. An optical gradient trap operates analogously, with the exception

that it is an electromagnetic phenomenon rather than an electrostatic one. It

is important to note that the force computed via (60) is time varying, but

the inertia of the dielectric object is such that it cannot possibly respond to

the rapidly uctuating �elds. Thus the optical force that is measured in the

laboratory is a time averaged force. The calculation of the stress and the net

force is straightforward; any error in the force calculation is do to error in the

electromagnetic �elds, which is determined by the grid spacing the and the

performance of the Maxwellian absorber. Based on previous computational

experiments in which computed electromagnetic �elds are compared to an-

alytical results it is estimated that the electromagnetic �elds are correct to

within ten precent [26] for a grid density of 6 cells per wavelength.
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4.1 Axial trapping of microspheres

A dielectric object can be trapped below the focus spot on the axis of the

laser beam. This is referred to as axial trapping. The geometry of axial

trapping is illustrated in Figure 2. The electromagnetic energy gradient is

towards the focus spot, so there is a possibility that the dielectric object will

be pulled towards the focus. A strong electromagnetic energy gradient is a

necessary, but not suÆcient, condition for trapping to occur. The incident

laser beam is both reected and refracted by the dielectric object, resulting

in a backscattered �eld and a forward scattered �eld. The net force on the

dielectric object will be towards the focus spot only if there is a signi�cant

amount of forward scattering. The amount of forward scattering depends

upon the size and dielectric constant of the object, the cone angle of the laser

beam, and the position of the object with respect to the focus spot. For axial

trapping the force is independent of the polarization of the laser.

Figure 2: Geometry of axial trapping experiments

In the following computational experiments � = 1:0�m, d = 1:0�m, x =

0:4�m, and � = 45Æ. The laser rise time � was equal to four periods and

the �elds were sampled 50 times per period, which is well below the time

step required for stability. The small time step is employed for an accurate

computation of the time-average force on the object. The �elds were updated

for 12 periods, or 600 time steps. The simulation was performed using a

variety of dielectric constants in order to determine the e�ect of dielectric

constant on the optical trapping eÆciency. As a reference illustration, Figure

11 shows a snapshot of the electric �eld intensity for the case of � = 1:0, the

dielectric object is invisible for all intents and purposes. The incident laser

beam is propagating in the negative x direction, with the focus spot at the

center of the computation mesh. Figure 12 shows the electric �eld intensity

for a dielectric constant of � = 1:2. In Figure 12 the forward scattered �eld

is ampli�ed compared to the incident �eld, hence the momentum in the axial

direction is qualitatively greater than the momentum in the incident beam and

there is a net force on the object towards the focus spot. Since the enhanced
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forward scattering in Figure 12 is subtle, the di�erence between Figure 12 and

Figure 11 is shown in Figure 13 with a change in scale.

The scattered �eld is ampli�ed for only a small range of dielectric con-

stants. Snapshots of the electric �eld intensity for dielectric constants of

� = 2:0 and � = 5:0 are shown in Figures 14 and 15. In Figure 14 the

forward scattered �eld is slightly diminished, and qualitatively the object will

be pushed away from the focus. In Figure 15 the forward scattered �eld is

signi�cantly diminished, the laser beam is essentially reected by the dielec-

tric sphere and conservation of momentum implies that the sphere will again

be pushed away from the focus spot in the negative x direction.

The time-average net force on the dielectric sphere was computed via (60)

for dielectric constants ranging from 1.0 to 2.0. The optical trapping eÆciency

Q is shown versus dielectric constant in Figure 3. The dielectric sphere is

trapped (positive Q) for epsilon ranging from 1.12 to 1.55. For � < 1:1 the

dielectric sphere does not refract the �elds enough to have a signi�cant e�ect

on the propagation of the beam, for � > 1:55 there is signi�cant backscattering

of the beam and the dielectric sphere is pushed away from the focus. The

computed Q values presented here are comparable to the measured results

presented in [4]. Note that in [4] the axial force was measured in water, hence

the dielectric constant used in this paper should be considered relative to

the background dielectric. The amorphous silica spheres used in [4] had a

relative dielectric constant of 1.12. For this value of �, we compute a Q of

0.008, compared to a measured Q of 0.006 +/- 0.001. Also note that in [4]

the dielectric sphere is free to move and hence the focus spot x is not �xed in

the experimental set-up.
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Figure 3: Computed axial trapping eÆciency Q vs. relative dielectric constant.

Parameters � = 1:0�m, d = 1:0�m, x = 0:4�m, and � = 45Æ
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4.2 Transverse trapping of microspheres

A dielectric object can also be trapped transversely, with the object adjacent

the focus spot rather than below it. The geometry of transverse trapping is

illustrated in Figure 4.

Figure 4: Geometry of transverse trapping experiments

Again, the electromagnetic energy gradient is towards the focus spot, so

there is a possibility that the dielectric object will be pulled towards the fo-

cus. The parameters for this experiment are identical to the axial trapping

experiment above, except for the orientation of the laser beam. In addition,

this computational experiment is performed for two di�erent polarizations of

the incident laser beam since the geometry is not symmetric. As a reference

illustration, Figure 16 shows a snapshot of the electric �eld intensity for a di-

electric constant of � = 1:0, the dielectric sphere is for all intents and purposes

invisible to the laser beam. The laser beam is propagating in the negative z

direction, with the focus spot again at the center of the computational mesh.

The electric �eld is polarized in the x direction. Figures 17 and 18 and show

the electric �eld intensity for dielectric constants of � = 1:2 and � = 2:0, re-

spectively. These �gures are snapshots of the �eld at the same instant of time.

Note that the laser beam is refracted towards the left (negative x direction)

opposite of what occurs in an o�-center billiard ball collision. Hence, quali-

tatively, conservation of momentum implies that the dielectric microsphere is

pulled towards the focus spot. Figure 19 shows the electric �eld intensity for a

dielectric constant of � = 5:0. In this �gure the laser beam is clearly reected

toward the right (positive x direction), and conservation of momentum implies

that the dielectric sphere will be pushed away from the focus spot.

The time-average net force on the dielectric sphere is computed in exactly

the same manner for the transverse experiment as for the axial experiment.
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The force was computed via (60) for dielectric constants ranging from 1.0 to

4.0. For the transverse trapping experiments the computed force has both x

and z components, and is it diÆcult to de�ne a single trapping eÆciency Q.

Instead, we de�ne

Qx =
cFx

nP
;Qz =

cFz

nP
; (61)

where Fx and Fz are the x and z components of the force, respectively. These

Q's are shown in Figures 5 and 6. A positive Qx means that the x component

of the force is towards the focus spot, and Figure 5 illustrates that the dielectric

sphere will be pulled towards the focus for particular values of the dielectric

constant. Comparing to the axial trapping experiment, we note that the

magnitude of the optical forces for the transverse experiment are signi�cantly

greater than that obtained for the axial experiment. This is in qualitative

agreement with the measured results in [4], which report transverse trapping

eÆciencies of 0.15, compared to 0.006 for the axial experiment. In addition,

the sphere is pulled towards the focus for a larger range of dielectric constant,

approximately 1:1 < � < 3:7. This phenomena has not yet been veri�ed

experimentally. It is not clear exactly for what range of dielectric constant

the particle is actually trapped by the laser beam. For example, at � = 3:0

Qx > 0 and the sphere is pulled towards the axis of the laser beam, butQz < 0

and the sphere is pushed away from the focus spot. On the other hand, at

� = 4:0 both Qx < 0 and Qz < 0 and the sphere is clearly not trapped. These

forces are illustrated graphically in Figure 7 for � = 3:0 and � = 4:0. The

optical scattering changes character at approximately � = 3:7.

The above transverse trapping experiment was repeated for the case of

electric �eld polarized in the y direction. Snapshots of the electric �eld inten-

sity are shown in Figures 20, 21, and 22 corresponding to dielectric constants

of 1.2, 2.0, and 10.0, respectively. For � = 1:2 and � = 2:0 the scattered

�eld is quite similar to that obtained for the x polarization experiment, again

the laser beam is refracted towards the left (negative x direction) opposite

of what occurs in an o�-center billiard ball collision. However the scattering

did not change character as the dielectric constant increased as it did for the

x polarization experiment. The laser beam was refracted more and more as

� increased. This di�erence between the x and y polarization experiments is

analogous to plane plane wave refraction at a dielectric interface, where one

polarization exhibits a change of character at a critical value of dielectric con-

stant (brewster angle for transverse electric polarization) whereas the other

polarization does not.

The time-average net force on the dielectric sphere is again computed

for a range of dielectric constants from 1.0 to 4.0. The x and z directed

forces are converted to Q's via (61) and these Q's are shown in Figures 8

and 9. The z component of Q is quite similar to that obtained for the x

polarization experiment, it is negative for all values of dielectric constant. The

x component of Q di�ers from that obtained for the x polarization experiment

in that it remains positive for all values of dielectric constant. This means that

the sphere is always pulled toward the axis of the beam. Again, it is not clear

exactly for what range of dielectric constant the sphere is actually trapped by

the beam. The vector optical force is illustrated graphically in Figure 10 for

� = 3:0 and � = 4:0 and shows that the optical scattering does not have an

abrupt change of character. However the z component of the force becomes
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dominant and it will ultimately be pushed away from the focus spot as the

dielectric constant increases.
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Figure 5: Computed transverse trapping eÆciency Qx vs. relative dielectric con-

stant, x polarization. Parameters � = 1:0�m, d = 1:0�m, x = 0:4�m, and � = 45Æ
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Figure 6: Computed transverse trapping eÆciency Qz vs. relative dielectric con-

stant, x polarization. Parameters � = 1:0�m, d = 1:0�m, x = 0:4�m, and � = 45Æ

Figure 7: Computed vector force on the dielectric sphere for the transverse trapping

experiment, x polarization. The left �gure is for � = 3:0, the right is for � = 4:0.
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Figure 8: Computed transverse trapping eÆciency Qy vs. relative dielectric con-

stant, y polarization. Parameters � = 1:0�m, d = 1:0�m, x = 0:4�m, and � = 45Æ
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Figure 9: Computed transverse trapping eÆciency Qz vs. relative dielectric con-

stant, y polarization. Parameters � = 1:0�m, d = 1:0�m, x = 0:4�m, and � = 45Æ

Figure 10: Computed vector force on the dielectric sphere for the transverse trap-

ping experiment, x polarization. The left �gure is for � = 3:0, the right is for

� = 4:0.
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5 Summary

An unstructured-grid vector �nite element is used for numerical modeling of

optical gradient traps. The method uses edge vector �nite elements as a basis

for the electric �eld and face vector �nite elements as a basis for the magnetic

ux density. This choice of basis functions allows for the proper modeling of

continuity (discontinuity) of the tangential (normal) components of the electric

�eld across material discontinuities. In addition, this choice of basis functions

prevents spurious irrotational �elds from polluting the solution. The method

allows for tensor permeability, permittivity, and electric and magnetic con-

ductivities. Thus it is a simple matter to implement a Maxwellian absorber to

attenuate outgoing electromagnetic waves. A second-order central-di�erence

method is used to advance the �elds and uxes in a leapfrog manner. The

method is shown to be stable and energy conserving, assuming the time step

is chosen according to a Nyquist condition.

A 3D unstructured hexahedral grid is used to model the dielectric object

and the surrounding space. A laser beam is launched into the computational

grid by a time varying source. As the electromagnetic �elds are evolved, the

net force on the dielectric object is computed by integrating the Maxwell

stress tensor over the surface of the object. The net force is a function of

time, but since the dielectric object cannot possibly respond to optical fre-

quencies the time-average force is computed. The computed optical trapping

eÆciencies are computed for both axial and transverse trapping geometries

for a 1�m sphere, using a range of dielectric constants. A simple sphere is

used so that the computed results can be compared to previously measure

data. The comparison is quite favorable considering the di�erences between

the computational experiment (object location is �xed with respect to the

beam) and the physical experiment (object is free to move in response to the

beam).

Optical trapping eÆciencies of up to Q = 0:05 were obtained for a relative

dielectric constant of � = 1:4 for the axial trapping experiment. We show that

the object is trapped only when 1:1 < � < 1:55. By examining the electric

�elds it is clear that the forward scattering is enhanced for this range of dielec-

tric constant. For � < 1:1 it appears that the sphere is not refractive enough

to scatter the beam, whereas for � > 1:55 the beam is essentially reected

from the object, pushing the object away from the focus. The amorphous

silica spheres used in the measurements [4] had a relative dielectric constant

of 1.12. For this value of �, we compute a Q of 0.008, compared to a measured

Q of 0.006 +/- 0.001.

The simulations of the transverse trapping experiments were quite inter-

esting. We show that the scattered �eld is refracted such that the electromag-

netic momentum behaves opposite of what occurs in an o�-center billiard ball

collision. With simple conservation of momentum arguments, this explains

how the dielectric object is pulled towards the focus spot. However this e�ect

was polarization dependent. For the x polarization the laser beam is refracted

only for particular values of dielectric constant. When the dielectric constant

was increased beyond a critical value of � = 3:7 the beam was reected from

the object. This phenomenon was qualitatively visible in the �eld intensity

plots and quantitatively visible as a change in sign of the net optical force on

the object. The y polarized laser beam, on the other hand, was refracted more
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and more as the dielectric constant was increased. For both polarizations, the

optical trapping force was signi�cantly greater that the transverse trapping

force, which is in agreement with the measured results in [4]. However, for

the transverse trapping experiments we had diÆcultly de�ning a single optical

trapping eÆciency Q, since the optical force had components in both the x

and z directions. If Qx < 0 it is clear that the object is pushed away from the

focus spot. It is not clear what happens when Qx > 0 and Qz < 0. To resolve

this issue it is necessary to have the sphere actually move in response to the

laser beam, but this represents a signi�cant e�ort and was beyond the goals

of this project.
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Figure 11: Snapshot of electric �eld intensity for � = 1:0 microsphere, axial experi-

ment.
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Figure 12: Snapshot of electric �eld intensity for � = 1:2 microsphere, axial experi-

ment.
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Figure 13: Di�erence between the � = 1:2 and � = 1:0 electric �elds clearly show

enhanced forward scattering.
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Figure 14: Snapshot of electric �eld intensity for � = 2:0 microsphere, axial experi-

ment.
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Figure 15: Snapshot of electric �eld intensity for � = 5:0 microsphere, axial experi-

ment.
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Figure 16: Snapshot of electric �eld intensity for � = 1:0 microsphere, transverse

experiment, x polarization.
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Figure 17: Snapshot of electric �eld intensity for � = 1:2 microsphere, transverse

experiment, x polarization.
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Figure 18: Snapshot of electric �eld intensity for � = 2:0 microsphere, transverse

experiment, x polarization.
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Figure 19: Snapshot of electric �eld intensity for � = 5:0 microsphere, transverse

experiment, x polarization.
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Figure 20: Snapshot of electric �eld intensity for � = 1:2 microsphere, transverse

experiment, y polarization.
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Figure 21: Snapshot of electric �eld intensity for � = 2:0 microsphere, transverse

experiment, y polarization.
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Figure 22: Snapshot of electric �eld intensity for � = 5:0 microsphere, transverse

experiment, y polarization.
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